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Abstract-Experiments are described in which clamped circular plates of 6061-T6 aluminum alloy and H.R.
steel A285 were subjected to uniformly distributed impulses to cause permanent central deflections ranging
from one to several plate thicknesses. A viscoplastic theory of plates is presented that takes into account large
deflections; the theory includes the rigid-perfectly plastic plate as a special case. By correlating predicted and
experimental permanent deflections of the strain-rate insensitive aluminum and the strain-rate sensitive steel
plates it is found that the effects of large deflections (which give rise to significant membrane forces) and strain­
rate sensitivity are comparably responsible for the deflections being below those predicted by the bending theory
of rigid-perfectly plastic plates.

INTRODUCTION

A SIMPLE formula for the permanent central deflection of a simply supported circular
plate caused by a uniformly distributed impulse was obtained by Wang [IJ from rigid­
perfectly plastic bending theory. By comparing these predicted deflections with experi­
mental results Florence [2J found that the greater the deflection the greater was the
overestimation. Because the plate materials (6061-T6 aluminum and C.R. steel 1018)
are insensitive to strain-rate the strengthening with deflection was attributed to the
buildup of membrane forces. Jones [3J analysed the simply supported circular plate
taking membrane forces into account and found good agreement with experimental
deflections. Wierzbicki [4J showed that deflection predictions of the rigid-perfectly plastic
bending theory can be improved by taking strain-rate sensitivity into account and de­
monstrated this by correlation of the deflections predicted from a viscoplastic theory and
the deflections of C.R. steel 1018 plates [2J, (this material has some strain-rate sensitivity).
Other investigations of the strengthening effects of strain-rate sensitivity include those of
Perrone [5J, Jones [6J, Kelley and Wilshaw [7J, and Wierzbicki [8].

The present investigation aims at determining the contributions of strain-rate sensitivity
and geometry changes to the strengthening of clamped circular plates, relative to the
rigid-perfectly plastic bending theory of Wang and Hopkins [9]. Again, the plates are
subjected to uniformly distributed impulses. The two materials chosen for the experiments
are 6061-T6 aluminum alloy and H.R. steel A285, the former because it is insensitive to
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strain rate and the latter because it is sensitive to strain rate. This choice allows a separation
of strain-rate and geometrical effects. Another reason for the choice of materials is that
the strain-hardening moduli are small enough to disregard.

The postulated viscoplastic theory contains the following simplifying assumptions
that permit the derivation of an explicit expression for the final deflected shape of a plate:

(i) the material behavior is linearly viscoplastic
(ii) the constitutive equations based on the Huber-Mises yield condition are approxi­

mated to yield linear relations between components of the generalized stress
and strain-rate vectors

(iii) only transverse displacements are taken into account

The reasonably good agreement between predicted and experimental deflections over
the entire loading range suggests that the postulated theory describes the plate response.
It is concluded from the investigation that strain-rate sensitivity and membrane force
buildup through large deflections contribute comparably to the strengthening of the
steel plates.

DESCRIPTION OF EXPERIMENTS

Explosive loading experiments were performed with 13 plates of 6061-T6 aluminum
alloy and 18 plates of H.R. steel A285, all nominally i- in. thick and 9! in. dia. Each plate
was clamped to prevent rotation but not radial displacements by means of two heavy
steel annuli with inner diameters of 8 in. Figure 1 shows the experimental arrangement.
Around the rim of each plate at ! in. spacing, i in. long slots were cut, so that circum­
ferential membrane forces in the annular portion of plate outside the 8 in. dia. circle were
suppressed. The slots are seen in Fig. 2, which is a photograph of two deformed aluminum
plates (one of the plates has been sectioned along a diameter).

The above method of damping was originally designed for an experiment to produce
deflections for comparison with those predicted by a bending theory taking into account
strain-rate sensitivity (this theory is described later as a special case). After the experi­
ments were carried out the theory was extended to include large deflections. Experiments
should be run with fully clamped plates. Nevertheless, comparisons are probably still
meaningful because the membrane forces achieve their full value over a large central
area of plate.

The uniformly distributed impulse was generated by sheet explosivet rolled to a
uniform thickness and cut out to form a disk of 8 in. dia. This disk of explosive was placed
centrally over a similar disk of solid neoprene attenuator which in turn was layed centrally
over the plate. The neoprene served to reduce the shock wave pressure entering the plate,
eliminate spalling, and to avoid possible changes of material properties. For the aluminum
plates i in. thick neoprene was found to be satisfactory. For the steel plates, in order not
to affect the strain-rate sensitivity, t in. thick neoprene was used; this thickness was
sufficient to reduce the peak pressure of the wave from the explosive so that only an elastic
wave entered the steel. Five grain mild detonating fuse was used to detonate the explosive.
The detonation velocity (0,29 in/,usec) is supersonic relative to the plate velocity (0'21 in/
psec) and the initiation point is at the plate center, so it is assumed, by analogy with beam

t Detasheet D, manufactured by DuPont.



FIG. 1. Experimental arrangement.
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results [10], that an ideal impulse simultaneously applied over the whole plate is satis­
factorily simulated by the rapidly expanding narrow ring of high pressure at the detonation
front.

For the explosive-attenuator-plate configurations, the impulse imparted was obtained
by projecting free 8 in. dia. plates in front of a double-flash X-ray unit. The rigid-body
displacement in the predetermined time between radiographs gives the plate velocity
and hence its momentum. It was found that the velocity imparted to the aluminum plates
was proportional to explosive thickness over a range from 15 to 60 mils and resulted in a
calibrated impulse of 10 = 635 dyn sec/cm2 per mil of explosive. These impulse calibration
experiments were carried out in a previously reported study [2] of simply-supported plates.
From 10 similar experiments with free 8 in. dia. steel plates and explosive thicknesses
ranging from 20 to 60 mils it was found that the velocity imparted was not proportional
to explosive thickness. A least square fit of the calibration points resulted in an impulse
of 10 = 768 -1'14he dyn sec/cm2 per mil of explosive, where he is the explosive thickness
measured in mils.

To determine yield stress an average value was taken ofstatic tensile tests with specimens
cut with and across the grain. Each curve was fitted by two straight lines and the point
of intersection determined the yield stress (this stress is higher than the yield stress obtained
from commonly accepted definitions).

Permanent deflections of points along a diameter and changes of thickness in central
and support regions were measured.

Table 1 contains the principal experimental data.

TABLE 1. EXPERIMENTAL DATA

Plate
material

A16061·T6
H.R. steel A285

Yield
stress

Ob/in 2
)

42,000
41,080

Density
(g/cm 3

)

2·7
7-8

Plate
thickness

(in.)

0·251
0·245

Plate
radius
(in.l

4
4

Attenuator
material

Solid neoprene
Solid neoprene

Attenuator
thickness

(in.)

1
lr
1
2

Impulse
calibration

(dyn sec/cm2/mil)

635
768-1'14het

t he is the explosive thickness in mils.

EXPERIMENTAL RESULTS

The experimental central deflections bex and the corresponding impulses 1 are listed
in Table 2. Central deflections (jth predicted by the rigid-plastic bending theory [9] are
given by

(1)

where R is the plate radius, J1. the area density, and M 0 = (Joh 2 is the fully plastic moment,
(Jo being the yield stress and 2h the plate thickness. The experimental and theoretical
central deflections are shown in Fig. 3, with convenient dimensionless scales based on the
above solution.

Both sets of experimental deflections are below the straight line of the bending theory
and have trends indicating plate strengthening with increasing impulse. Because the
aluminum alloy is insensitive to strain rate, strengthening is due to buildup of membrane
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TABLE 2. EXPERIMENTAL RESULTS

Malerial Experiment no.
Impulse I

----_.._-~----

(dyn sec/cm 2 )

Central deflection
radius
iiex/R

()ex

--------------._-_._--- ,-------_.- ___ '_"'_,'~__ c_______..._,____"_.

A16061-T6 \ 0·261\ 11\,500 0·264
2 0·231\ 16,400 0·230
3 0·238 16,400 0·229
4 0·228 15,700 0·221
5 0·228 15.700 0·216

6 0·212 14,600 0·207
7 0·202 \4.000 0'185
8 0·196 \3.500 0'18\
9 011\0 \2,400 0'154

10 0·170 11,700 0'144

11 0·\62 11.200 0·\34.,
0·144 10,000 ()-I 121"'-

13 0144 9900 0·108

RR. steel A285 I 0·6\5 42,400 0280
2 0·598 41.200 0·252
3 0·559 38,600 0·249
4 0·559 38,600 0·247
5 0·507 35,000 0·220

6 0·491 33,900 (l'215
7 0-471 32.500 0'210
1\ 0471 32.500 0·208
') 0·424 29,200 ()-183

10 0·417 21\.1\00 0·176

11 (H79 26.100 0'152
12 o· 37i\ 26.100 0·155
13 0·332 22.900 (}128
14 0325 22,400 0129
15 0270 11\,600 0·080

16 0263 18,100 0·078
17 0206 14.200 0·050
11\ 0·196 13,300 0·037

t (bth)WH is theoretical central deflection given by (I).

0.6 r---r----,--,--.,---r--'7r---r----,--,---,

0·538
0·591
0·589
0'619
()·610

0·674
(}651\
0'688
0·700
072?

0744
()·71\3
0·766

0·290
0·277
0·312
0310
0335

0·349
0·371
0367
0·398
()·397

0-415
0·425
0-453
0'477
0-429

0-438
0-463
0394

At 6061-T6
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FIG. 3. Experimental and theoretical central deflections for clamped plates.
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forces. The deflections for the steel plates lie below those for the aluminum plates indicating
additional strengthening due to strain-rate sensitivity. Whenever deflections are such
that i5/R < (}I5, strain-rate effects are larger than membrane effects, and whenever
fJ/R> 0,15, membrane effects are larger than strain-rate effects.

Figure 4 shows the dependence of the yield stress of mild steel upon strain rate. The
curve represents an average of experimental data contributed by many authors [IIJ.
It is seen that the yield stress 0"0 rises rapidly with strain rate i in the range 0 < e< 10
but slowly with strain rate above e= 102

• (At the highest impulse the strain rate is about
200 sec-I.) Hence for small impulses, when the deflections are small enough to consider
the membrane ·effects as small, strain-rate strengthening predominates and for large
impulses, when the deflections are large enough to consider the membrane effects large,
membrane strengthening predominates. Because of the slow rise in yield stress at higher
strain rates the rate of change with impulse of the difference between the i5/R values of
aluminum and steel plates settles down to a small quantity as is seen in Fig. 3.

From plate deflection measurements it was found that diametral profiles, normalized
at the centers, do not vary greatly with impulse. Some profiles are shown in Fig. 5. This
observation indicates that, apart from magnitudes, velocity fields are only moderately
sensitive to the level of impulse.

3
I I I

2~ -
qo(€J

170 (0)
1t- -

0 I I I

0 100 200 300 400

i; - sec·1

FIG. 4. Variation of mild steel yield stress with strain rate.

Measurements of plate thickness indicate negligible change near the supports and
thinning in the central region increasing with impulse from 5 to 9 per cent for aluminum
plates and 1 to 4! per cent for steel plates.

CONSTITUTIVE EQUATIONS

It is assumed that the viscoplastic material can be described as a special case of the
constitutive equation [12J

• 0 (F) iJF for J(12) > keij = Y <I> -
iJO"ij (2)

iij = 0 for J(12) s k

where iij and O"ij are components ofthe plastic strain-rate and stress tensors, yO is a physical
~onstant of th~ mat~rial. In (2), the functi.on F is .defined by F J z/k - 1 where J 2 = sijsj2
IS the second mvanant of the stress deViator WIth components sij and k is the yield stress
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FIG. 5. Final deflection profiles ofclamped plates.

(3)

in simple shear. The function <D(F) should be determined from the results of undimensional
tests to describe the material behavior under combined dynamic loading.

The first step in the linearization process is to take <D(F) = Fin (2), which then becomes

iij=y(J(J2)/k-l)si/J2 for J(J 2»k

c:ij = 0 for ,/(J2) :s; k

where y = 'l/2k; y will be called the viscosity constant of the material. These constitutive
equations correspond to a straight line of slope iy through the point (0, I) in Fig. 4. As
Y--. 00, (3) reduce to the Levy-Mises flow rule for rigid-plastic materials, t\] = ;,Sjj'

The second step in the linearization process is to assume that
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where sij denotes components of the plastic stress deviator (on the surface F = 0) des­
cribing the "state of comparison." Then (2) becomes

Eij = y(sij - si)lk for Sij > sij
(4)

Eij = 0 for Sij S sij'

Linearization is complete if sij is known. An approximation to sij is given by the plastic
stress deviator s0 corresponding to the quasi-static flow of a perfectly plastic plate with
the same loading and boundary conditions as the viscoplastic plate. It has been shown [8]
that s0 is a good approximation to sij if the velocity field of the quasi-static problem with
perfectly plastic material is similar to the velocity field of the dynamic problem with visco­
plastic material. The comparison of normalized deflection profiles from experiment
with that from the Eason solution [13] for a perfectly plastic plate with Huber-Mises yield
condition demonstrates the similarity of the velocity fields (Fig. 5). It should be noted
that the stress tensor s0 is not constant at each point in the plate but varies during the
deformation process. In general, the directions of the strain-rate vectors appearing in (3)
and (4) do not coincide and the linearized constitutive equation (4) belongs to the class
of non-associated flow rules.

Since the problem is rotationally symmetric, equations (4) in cylindrical coordinates
(r, e, z) become

a, - ai = (2E, +Eo)k/y

a0 - a1 = (2Eo +E,)k/y.
(5)

Equations (5) include the shell or plate assumption of az = a: = O. Use of the Love­
Kirchhoff hypothesis in integrating (5) across the plate section yields the flow rule

M, - Mi = (2x, +xo)(kly)(2h313)

M 0 - M1 = (2xo+x,)(kly)(2h3/3)

N, - Ni = (2A, +Ao)(kly)2h

No - N1 = (2Ao+A,)(kly)2h

(6)

where M, N, X, and Aare bending moments, membrane forces, curvature rates, and ex­
tension rates. M* and N* satisfy the Huber-Mises yield condition for rotationally sym­
metric shells [14] and are in static equilibrium for a given boundary value problem.

GEOMETRICAL RELATIONS AND EQUATION OF MOTION

In terms of the horizontal and vertical components of displacement, V and l-t; the
generalized strains are [14]

A, = V'+(W)2/2

x, = - W"

AO = Vir

X o = -W'lr
(7)

where primes denote differentiation with respect to plate radius r. Based upon the experi­
mental results of Griffith and Vanzat [15], the simplifying assumption V = 0 is introduced
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in (7). Differentiation of (7) with respect to time gives the geometrical relations

20 = 0

xo= -W'lr
(8)

Starting from the Reissner plate equations [16J based on large displacements, small
strains, and neglect of rotary inertia, Jones [3J derived equations of motion employing
geometrical approximations. Assuming that U = 0, the equation of transverse motion
combined with the equation for rotational equilibrium of a plate element can be written
in the form

(9)

(12)

where P is the value of the uniformly distributed pressure.

FORMULATION OF THE MATHEMATICAL PROBLEM

Except at r = R the plate receives an initial transverse velocity Vo = Illl. where I is
the intensity of the uniformly distributed impulse; thereafter P = o.

In the formulation the following dimensionless variables are employed

w = WIR m, = M ,IM 0 mo = MolM 0 n, = N ,INo no = N 01No

Wo = WolR p = rlR p* = P*R 2IM o J = IR21Motf (10)

rx = /lR3/MotJ (J = 2Rlh = RNolMo T = tltl tf = liP'!)

where M o = (Joh 2 = j(3)kh2 and No = 2(Joh are the fully plastic bending moment and
membrane force, Wo is the central deflection, and tf is the duration of motion according
to the bending theory of rigid-plastic plates [9]. The dimensionless form of (9) is

pm; +2m~ - m~ +r~new' - rxpw = 0 (11)

Eliminating A" Ae, %, and %e between (6) and (8) gives, in dimensionless form the relations

m,-m: = -(2w" +w'lp)4/3y{J

me-m: = -(vV+2w'/p)4/3y{J

where y = j(3)'Ytr'

Now m:, m:, n: and n: satisfy the equilibrium equations of the "state of comparison"
which corresponds to the quasi-static flow of a clamped plate under a uniformly dis­
tributed pressure p*. Hence

p(m:r+2(m:Y-(m:Y+{Jn:w'-pp* = O. (13 )

For small deflections (bending theory), p* is constant and equals the load carrying capacity
of the plate which, with the Huber-Mises yield condition, is p~ = 12·5. For larger de­
flections, membrane forces come into play and p* becomes an increasing function of the
central deflection Wo'
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Figure 5 demonstrates the similarity of the experimental and quasi-static solution
profiles. By assuming these deflections to be identical, (13) may be subtracted from (11)
to give

p(mr-m~)" +2(mr-m~)' -(mo-mty +{J(no-no)w' + pp* -apw = 0 (14)

By using (12) to eliminate the moments and membrane forces, (14) becomes

L(w) = V4w+aaw+ap*+3{J2l-ilw'w"/8 = 0 (15)

where V2 = 02/02p +a/pap is the Laplace operator and a = 3Y{J/8.
Because of the unique relationship between generalized stress and strain rate in a

viscoplastic material, discontinuities of slope and hinge circles are inadmissible. Hence,
at the clamped support w = w' = 0 and at the plate center w' = O. Also, from symmetry
mr = mo at the center. The boundary conditions, entirely in terms of w, are thus

The initial conditions are

w" -w'/p = 0,

w'=w=O

w(p,o) = 0

w' = 0 at p = 0

at p = 1.

w(p,o) = i/a

(16)

(17)

BENDING SOLUTION FOR SMALL DEFLECTIONS

When the deflections are small enough to neglect geometry change and membrane
forces the governing equation (15) simplifies to the linear parabolic equation

V4w+aaw+ap~ = 0 (18)

In the absence of membrane forces and for a constant pressure term ap~ the moments
m~ and mt do not change during deformation. In this case the interpretation of the linearized
flow rule (6) is that the generalized stress trajectory in bending moment space forms at
each point in the plate a closed loop. It has been shown [4,7J that the assumed non­
associated flow rule (6) in the bending theory of dynamically loaded plates leads to results
in general agreement with results from experiment and theory based upon (2).

The solution of (18) satisfying the boundary and initial conditions (16) and (17) is

_~ ~ 2J 1(An) -;'~t/~ 4
w(p,r) - * M L... ASI C )J2(A )l/Jn(An,p)[(1-e )(1+11/An)-rJ11 (19)

Poll 0 n= 1 n 0 An 0 n

where
l/Jn(An, p) = Io(An)JO(An, p)-Jo(An)Io(An, p)

In (19), 11 = aapUi = 3J(3)p~YIlR2/Ih, Jv and Iv are respectively Bessel and modified
Bessel functions of the first kind (v = 0,1), and the eigenvalues )'n are roots of the trans­
cendental equation

The first nine eigenvalues are

3'19619 6·30635 9'43955 12-5777 15·7165 18'8565 21-9972 25-1380 28·2790



562 T. WIERZBICKI and A. L. FLORENCE

Because of the A; term in the denominator of (19) the series is rapidly convergent, pro­
vided t"/ is not too large. Since the different eigenfunctions l/JP,", p) reach their maxima at
different times r~), the plate does not come to rest at all points simultaneously. In the
phase plane (p, r) there exists a curve ~ = ~(rf) which separates regions of viscoplastic
flow and rigid behavior.

The equation determining the interface ~ = ~(rf) is given by w(~, r f) = O. This curve
is shown in Fig. 6 for the chosen value t"/ = 102

. It is seen that starting from r = 0·5 a rigid
zone propagates from the support at p = 1 towards the plate center, arriving at r = 0-73.
For the intermediate time 0-5 < r < 0-73, the plate is undergoing deformation within
the region 0 < p < ¢ while the outer deformed region ¢ < p < 1 remains rigid. This mode
of deformation is analogous to that in a viscoplastic rod during axial impact with a rigid
target as described by Ting and Symonds [17].

1.0,.....--------.,..----------,

0.8

0.6

I
~(1'1 )T =-

If

0.4

0.2

1.00.5

p = r/R

oL.- ...l-_.......:~ ....I

o

FIG. 6. Rigid and viscoplastic zones.

In Fig. 7 is seen the normalized and dimensionless permanent plate profile obtained
from (19) with 11 = 102

. Also shown for comparison is the profile obtained by retaining
only the first term of (19)_ The difference is negligible. The first term approximation is
derived by solving w(~, rp}) = 0 to give

(20)

substituting rjll into the first term of (19), and using the orthogonal properties of l/J"(t," , p)

to give

(21 )
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FIG. 7. Plate deflection profiles according to exact solution and first mode approximation.

where (= rJ/).i = 3.j(3)p~yf.1R2//hAi. By setting p = 0, Al = 3'196, and p~ = 12·5 in (21)
the central deflection 0 is given by

o/R = 0'54(/2R/8f.1M0)2([1- (log(l + 1/0]. (22)

The special case ofthe rigid-perfectly plastic plate is approached by letting the viscosity
constant y tend to infinity. As y ~ 00, (20) shows that tjl) ~ 1, that is, the duration becomes
t f = //p~ as in the Wang and Hopkins solution. As y ---> 00 (hence ( ---> 00), (22) shows that
the central deflection is given by OjR = 0'54(/2R/8f.1M0) which compares favorably with (1).

As y ---> 0 (hence ( ---> 0), 0 ---> 0 as it should because a rigid plate is being described.
In Fig. 8 is shown the variation with II( of the coefficient 2([1- (log(l +1/01 in (22) and
demonstrates the increase in strength of a plate with decrease in the viscosity constant.

STATIC LO~DEFLECTION RELATION

Equation (15) governing large deflections of an impulsively loaded plate includes an
unknown function p*(wo), which is the load-deflection relation of a statically loaded
rigid-plastic plate yielding according to the Huber-Mises condition and associated flow
rule. Because such a static solution is not available, an approximation to the Calledine [18]
solution will be used instead. This solution is shown in Fig. 9. Part of the curve is the
parabola

p*/p~ = 1+(5/12)(wo/2W for wo/2h:s 2/3 (23)

while the remainder was obtained by numerical computation. Also shown in Fig. 9 is
the approximate membrane solution of Gnat and Haythornthwaite [19], which uses the
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FIG. 8. Influence of-viscosity constant on plate deflections.
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Tresca yield hexagon circumscribing the Huber-Mises ellipse. The solution is the straight
line

p*/p~ = 1·1l(wo/2h). (24)

It is seen in Fig. 7 that with increasing deflection the bending-membrane solution
approaches the membrane solution. A very good fit of the Calledine solution over the

4.----....--......--...---....--...,...---.,~- .....
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FIG. 9. Static pressure-deflection relations for clamped plate.
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entire range of deflections is

(25)

BENDING-MEMBRANE SOLUTION FOR LARGE DEFLECTIONS

Because it does not seem possible to obtain the exact solution of (15) an approximate
solution is obtained by using the Galerkin procedure. A solution is sought in the form

co

w(p, r) = L wn(r)ljJip)
n=O

(26)

where IjJn(P) form a complete system of functions. Functions which satisfy the boundary
conditions (16) can be taken as

n = 0,1,2, ...

i = 0, 1,2, ... , n.

The functions wn(r) are determined from the set of relations

{ L(wn)IjJ;(p)p dp = ° (27)

Because the function ljJo(p) alone gives a good approximation to the normalized and
dimensionless deflection profiles of the experiments only the first term in (26) is retained.
Note that ljJo(p) = (1- p2)2 is the same as the function occurring in (21), the small deflection
solution. Carrying out the integration in (27) leads to the following non-linear ordinary
differential equation for the central deflection

(28)

where A = 3·2 and S 1 = 1/37'5. For small deflections, p* is constant and the non-linear
term Sd32W6 is small, so the solution of (28) is (21) with Areplacing Al = 3·196. Conse­
quently, the initial velocity wo(o) is taken as the initial velocity from the first mode approxi­
mation (21). The initial conditions are therefore

w(o) = 0. (29)

Consider first deflections not exceeding the plate thickness for which case the load­
deflection relation (23) holds. In the notation of (28), (23) is

p*(wo) = p~(l +S2P2W6 )

where S2 = 1/38'4. By assuming that SI = S2 = S, a simple bending-membrane solution
is obtained. Employing the change of variables Wo = Wo dwo/dwo in (28) and integrating,

(all/A4)wo -(Glx/A4 )2(lOpU61l) log(wo+ 10p~a/6A4) = - (wo +SP2w6/3) +C (30)

where the constant C is determined by the initial conditions (29). When Wo = 0, Wo = fJ/R
and thus (30) gives the result

(31)

The central deflection of a rigid-plastic plate is obtained by letting y -+ 00 (and hence
( -+ (0) in (31); the term 2([1-( 10g(1 +1/0] -+ 1. To neglect geometry changes, set
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S = 0 in (31) and obtain (22). By comparing (22) and (31) it is seen that the term describing
strain-rate effects is the same for small and large deflections.

For deflections exceeding the plate thickness, the load-deflection relation (23) becomes
increasingly inaccurate (Fig. 9) with increasing deflection. The relation (24) can be used
if the deflections are large enough to allow the stress distribution to be essentially a purely
membrane state. An explicit solution of (28) is now apparently only possible for the
limiting case, 'Y ~ 00 (and hence a ~ CD), describing the rigid plastic plate. This solution is

(32)

Using the relation (25) covering the entire range of deflections and again restricting the
solution of (28) to the limiting case of the rigid-plastic plate, results in

(33)

where

THEORETICAL AND EXPERIMENTAL RESULTS

The effect of geometry change is seen in Fig. 10. Formulas (31), (32) and (33) give the
central deflections of rigid-plastic plates (y = 00) and predictions compare favorably
with the upper set of experimental points for 6061-T6 aluminum alloy. Formula (33)
applies over the whole range of loading and as impulse or deflection is increased the curve
bends away from the bending-membrane solution (31) towards the membrane solution (32).

FORMULA (33)

RIGID-PLASTIC

BENDING THEORY
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FIG. 10. Experimental and theoretical central deflections for clamped plates.
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For the larger impulses the experimental deflections become greater than the theoretical
deflections. This trend with increasing impulse is attributable to the clamped support
condition of the experiments. It is recalled that the clamping was against rotation only and
radially inward displacements were allowed whereas in the theory the simplifying assump­
tion n = 0 was used.

The influence of strain rate in the bending and bending-membrane solutions (22) and
(31) is described by the functionf(() = 2([1-( log(l +1/()] shown in Fig. 8. A comparison
is made with the experimental results shown in Fig. 10 by finding values of the viscosity
constant y necessary for correlation. From two curves fitting the two sets of experimental
points, ratios of steel to aluminum plate deflections were calculated at several impulses
to cover the range; these ratios range from 0·6 to 0·72. Each deflection ratio was equated
to f(() and the value of ( was found; this can be done readily by using Fig. 8. From the
formula ( = 3J(3)p~YJ1R2IIhAi the value of y at each chosen impulse was calculated.
Several values of yare shown in Fig. 8; y ranges from 100 to 370 sec - 1.

A value of y = 350 sec- 1 employed in the bending-membrane solution (31) results in
the curve shown in Fig. 10 and gives a fairly good approximation to the experimental
results for the steel plates. Agreement over the whole range ofdeflections cannot be expected
with a theory of linear viscosity, as can be deduced from Fig. 4, especially for low impulses
and hence low strain-rates. The difference between theory and experiments for high im­
pulses and hence high strain-rates largely attributable to the experimental clamping
arrangement which permitted radially inward plastic flow.

CONCLUSIONS

Experiments on impulsively loaded clamped circular plates of 6061-T6 aluminum and
H.R. steel A285 show that, relative to strength according to the bending theory of
rigid-plastic plates, membrane forces (arising with large deflections) and strain-rate
sensitivity have equally important strengthening effects. At low impulses, strain-rate
strengthening dominates because of the initial rapid rise of the yield stress of the steel
with increasing strain-rate (Fig. 4), and because the deflections are still small enough
to keep membrane strengthening small. At higher impulses, membrane strengthening
dominates because the yield stress of the steel increases only slightly with increasing
strain-rate.

The governing equation (15) has been derived based upon linear viscoplastic behavior
and moderately large deflections. Simple formulas for the central deflection have been
obtained for the following cases:

(a) Viscoplastic bending action for small deflections (22).
(b) Viscoplastic bending-membrane action for small deflections (<<:5 < 2h) (31).
(c) Rigid-plastic bending-membrane action for large deflections (32).
(d) Rigid-plastic bending-membrane action for all deflections (33).

Correlation of the experimental deflections of the aluminum alloy plates with the
predictions of (32) (large deflections) and (33) is reasonably good. Correlation of the
deflections of the steel plates with the predictions of (31) (used also for large deflections)
is fair (Fig. 10).

To improve this study it is suggested that further similar experiments be carried out
but with plate edges clamped against inward radial flow. This additional clamping is



568 T. WIERZBICKI and A. L. FLORENCE

expected to increase the range of dominance of the membrane strengthening and improve
correlation of the aluminum plate deflections with the predictions of formulas (32) and (33).
Improvements in the theory are necessary for better correlation with steel plate deflections
and to explain the small curvatures near the support. However, simple results of practical
value would probably be sacrificed in a less approximate theory. One simple modification
is to close y' from a straight line in the yield stress-strain-rate plane of Fig. 4 fitting the
curve in the higher strain-rate region. A similar technique was employed in [20].

Acknowledgements--The authors are indebted to L. J. Dary for carrying out the experiments and to B. P. Bain
for data reduction.
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A6cTPaKT-111J1araI{)TC~ 1KcnepllMeHTbl, KaCalOLUf.leCll nOBe.ll.eHHlI 1aLUeMJleHHbiX KpyrJlblX LTnaCTHHOK.
H3rOTOBJleHHbiX H3 aJ1l0MHHHero CnJlaBa 6061- T6 HCTa.JlH A 285 BblCOKoro corrpOTHBJleHllll, rrOilBeplKeHHblX
nencTBHIO O).lHOMepHo paCnOJlOlKeHHblx llMnY.JlbCoB. 3Tll HMnYJJbCbl Bb13bIBalOT nOCTOliHllbie l.\eHTpaJlbHble
nporll6bl, IiMelOLUHe Be.JlHyHHy OAHOn .uo HeKoTopblX TOJJLUHH n.JlaCTHHKIL npe.uJlaraeTCll B~")Koynpyrall

TeopHli nnaCTHIlOK, Y'lHTbIaIOLU01l6om,llllfe Hporf.l6bl. B KayecTBe cnell.Ha.JlbHOrO CJly'fall, TeoplUI 3aKJIIO'IaeT
lKecTKo-H,!J.eaJlbHO rmaCHl'iecKylO nHacTIfHKy. nyTeM KoppemlUHH npeil.ycMoTpeHHblx H 3KcnepHMeHTa­
JlhHblX nporH6oB nnaCHfHOK, H3rOTOBJIeHHbiX H3 a.JlIOMHHHlI He'fyBcTBHTeJIbHOrO KCKOpOCTIl .ue4lopMall.HH
H CTaJIbHbIX nJlaCTHHOK, 'lYBcTBHTeJlbHbIX KCKOpOCTH ,ll.e4lopMaURlI, onpe,ll.eJleTCll, 'ITO 3414>eKTbI6oJlbIllHX
nporlf6oB !KoTopble ilalOT pOCT, IfMelOLUHM 60Jlblllf.le 3HaneHHe, MeM6paHHbiM YCH.JlllllM! Ii 'fyBCTBH­
TeJJbHOCTb KCKOpOCTH il.e4lopMal.\HH JlB.JlllIOTCll cpaBHHTeJJbHO OTBCTcTBeHHble rrporH6aM paCnOJlOlKeHHblM
HHlKe 3THX, KOTopble npe.JlCKa3b1BlIeT MOMeHTHa~ TeopHli lKeCTKO-HileaJlbHO rrJJaCTH'fecKIlX nJlaCTHHOK.


